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DISCLAIMER

It is impossible to fully cover this topic in 2 hours.

This lecture aims at being a starting point to explore this field in more details.

It is biased towards my personal interests and own work.



UNIVERSAL(?) STAR FORMATION IN A DIVERSITY OF ENVIRONMENTS

This universality is observed ... 
where it can be resolved! 
i.e. in the solar neighborhood, 
i.e. in 1 single environment

M83: local spiral

Antennae: local merger

UDF 6462: distant (z~2) clumpy disk

Polaris

Taurus

IC 5146

• filamentary structure
• diameter of ~ 0.1 pc
• extinction threshold of Av > 7
• pre-stellar cores in knots
• cluster formation at intersections
• universal initial mass function (IMF)

• different cluster formation
• variations of the IMF
• role of disk structures (spirals, bars)
• impact of interactions and mergers
• evolution with redshift
• ...

But looking further reveals:

Star formation appears to be universal:



COSMIC EVOLUTION OF STAR FORMATION

The evolution of the conditions in the ISM, along 
galaxy formation/evolution, impacts star formation

Fig: SFR density (per unit comoving volume) as 
function of redshift (Madau & Dickinson 2014)

• galaxy mergers (triggering starbursts) 
(density of the Universe  )

• formation of the disks
• formation of substructures (spirals, bars)
• lowering of the gas fraction
• lowering of the turbulence

∝ (1 + z)3

The peak of SFR occurred at redshift ~2
(statistically speaking, not for all galaxies)

On average, most galaxies form less and less stars



BARYONIC CYCLE

The recycling of gas is set at galactic scale

Star 
formation

Feedback

molecular 
clouds

Outflows

Baryonic 
cycle

Inflows

• how much gas is available in the galaxy?
• where is this gas (corona, inter-arm, 

clouds ...)?
• in which physical state (density, 

temperature) this gas is?
• how / how fast does this change?

To understand galaxy formation and 
the ISM in galaxies, we first need to
answer these questions:



GAS FLOWS

Intergalactic /  
circumgalactic medium

infall 
(~ 1 M⦿/yr)

galactic winds 
(< 1 M⦿/yr)

star formation 
(~ 1-10 M⦿/yr)

typical values for a Milky Way-like galaxy

stellar feedback 
(~ 1 M⦿/yr)

winds: ~ 0.3 M⦿/yr
planetary nebula: ~ 0.6 M⦿/yr
supernovae: ~ 0.03 M⦿/yr

stellar remnants 
(black holes, white dwarfs, neutron stars)

dying stars 
(a few M⦿/yr)



PHASE DIAGRAM

Phase diagrams can be plotted from simulations. They depend on the physics considered and resolution and can vary a lot. 
Only generic features are presented here.

Fig: phase diagram 
(adapted from Marinacci et al. 2019)

Unstable phase 
(pressure vs. cooling) 

cloud formation

Hot coronal gas, galactic winds 
(outflows from feedback)

Star formation

HII regions 
(photo-ionisation)

inter-arm regions 
(~ isothermal at 104 K)



A MULTI-SCALE AND MULTI-PHYSICS TOPIC

cosmological 
structures

galaxy 
formation

galactic 
dynamics

star 
formation

star cluster 
evolution

gravitation, tides

mergers
outflows, galactic winds

turbulence
shear

magnetic fields
stellar evolution

stellar feedback

gas inflows

10 Mpc 
1 Gyr

1 kpc 
10 Myr

10 pc 
1 Myr

0.1 pc 
0.1 Myr

100 kpc 
100 Myr



WHY SIMULATIONS?

Compared to observations, simulations can provide:

Movie: gas density in a simulation of a 
local disk galaxy (Renaud et al. 2021c)

• access to time, evolution
• 3D structure
• easier measurements of  

dynamical quantities (mass, acceleration)
• higher resolution (except in the Milky Way)
• control on the initial and boundary conditions

Simulations are (and should be considered as) expensive experiments

Never trust a computer!

They are used to simplify the reality, and help the interpretation 
of complex physical phenomena, and of their interplay

Linking simulation results back to reality is difficult



SEVERAL TYPES OF GALAXY SIMULATIONS

cosmological volume cosmological zoom-in isolated galaxy galaxy patch ISM box

• initial conditions (CMB)
• statistics on galaxy pop.

• poor resolution for 
describing star formation 
and feedback

• barely resolves galactic 
disks

New Horizon  
Dubois et al. (2021)

Vintergatan 
Agertz et al. (2021) 

Renaud et al. (2021a,b) Renaud et al. (2021c)
Tigress 

Kim et al. (2017) Federrath et al. (2008)

size: > 10 Mpc
res.: ~100-500 pc 

size: ~1 Mpc
res.: ~10-100 pc 

size: ~100 kpc
res.: ~0.1-10 pc 

size: ~0.1-1 kpc
res.: ~0.1-10 pc 

size: < 100 pc
res.: < 0.1 pc 

👍 

👎

• initial conditions (CMB)
• some can capture GMCs

• only one galaxy
• do not resolve internal 

GMC physics
• very expensive to run

• control on the parameters
• can be cheap to run

• not realistic environment 
(mergers and gas accretion 
missing)

• relies on artificial initial 
conditions

• can be very expensive to run

• easy to setup
• relatively cheap to run

• misses several aspects 
of disk dynamics

• imposed instabilities
• not a huge advantage 

compared to isolated 
galaxies

• very high resolution
• control on the parameters

• no realistic gas recycling
• no effect of galaxy 

(e.g. potential, turbulence, 
tides, shear etc.)



WHY DO LARGE-SCALES MATTER FOR THE SMALL-SCALE ISM?

Several evidences that properties of the ISM are tightly connected to > kpc scales:

• Molecular clouds are turbulent

Turbulence dissipates over a few Myr within a typical cloud

Feedback from young stars (winds, supernovae) is a source of turbulence, but ...

Star-free clouds (i.e. before star formation) are also turbulent → turbulence must be injected at larger scales

Possible sources: differential rotation of the disk, gas accretion ...

• Young stars and star clusters are preferentially found along spiral arms

• Special physical conditions in the bar induce a diversity of star formation activity

Giant molecular associations at the tips (e.g. W43) → possibly the formation sites of massive clusters

Weak star formation in the Central Molecular Zone (i.e. the central ~ 300 pc)

Assembly of the nuclear star cluster



DENSITY INCREASE AND NEED FOR SUPPORT

Stars ( ) form in giant molecular clouds (GMC, )∼ 10−7 pc, 1024 cm−3 ∼ 10 − 100 pc, 100 cm−3

Density increase by 22 orders of magnitude!

Only stars younger than 10 Myr are observed in GMCs  → lifetime of GMCs: tGMC ∼ 10 Myr

Free-fall time: tff =
3π

32Gρ
≈ 3.6 Myr

100 cm−3

nH

  → clouds are not in free-fall → need for support against collapsetGMC > tff

Another argument from stability criterion:   → clouds should collapse, unless supported...MGMC ≫ MJeans ∼ MBonort−Ebert

(but maybe not for all of GMCs!
e.g. inter-arm clouds, 

mergers, high redshift)

definitions and 
derivations at the end



TURBULENCE AND THE REYNOLDS NUMBER IN SIMULATIONS

The Reynolds number quantifies the nature of a flow:

kinematic viscosity

Re =
V L
ν

scale-length of the flow 
(e.g. diameter of the pipe)

velocity

High  ( ) = turbulent flow, low  = laminar flowRe ≲ 100 − 1000 Re

=
inertial forces
viscous forces

The cold ISM is highly compressible and supersonic: Re ∼ 105−7

Hard to estimate in simulations, but  → much smaller than realityRe ≈
2L
Δx

∼ 102−4

see Teyssier (2015) for details

Fig: laminar to turbulent 
transition in candle smokeIn the intergalactic medium:  (uncertainties from magnetic viscosity)Re ∼ 101−10



Definition of turbulence: instability of laminar flows that develops as 
soon as the inertial forces greatly exceed the viscous forces 
(from Hennebelle & Falgarone 2012)

TURBULENCE CASCADE

Movie: simulation of turbulence gas 
(Ohlin et al. 2019)

Injection scale: ~ 1-10 kpc 
Dissipation scale: probably milliparsec ~ 1000 AU
Scales in between are called the inertial range

Turbulent energy is transferred to smaller scales until dissipation 
(dissipation = conversion into heat due to particle viscosity)

Kolmogorov's cascade: self-similarity of the velocity field in 
incompressible turbulence → energy spectrum E ∝ k−5/3

wavenumber 
(=1/scale)

Turbulence is key in setting the density structure of the ISM

But the ISM is highly compressible!



2 MODES OF TURBULENCE

Turbulence leads to complex density and velocity structures, and fluctuations

Measurement through the velocity dispersion (e.g. line broadening): Δν = ν ( 2kBT
mHc2

+
2v2

3c2 )
1/2

thermal turbulentTurbulence is a (non-thermal) pressure term → it acts against collapse 

Fluctuations can also increase the density locally → it acts with collapse

Movies: simulations of 2 types of turbulences. The 
left one is mostly mixing the gas while the right one 

leads to more compression. Both modes exist in 
galaxies. (from C. Federrath)

Galaxies host the 2 modes of turbulence, but their relative importance changes (e.g. in mergers, see Renaud et al. 2014)



DENSITY PROBABILITY DISTRIBUTION FUNCTION (PDF)

The result of the interplay between turbulence, gravitation,
shocks etc. is a wide distribution of gas densities

𝜌 [cm-3]

no
rm

al
ize

d 
PD

F

Milky Way

LMC 
SMC

In galaxies, the PDF is a log-normal (set by turbulence),
with a power-law tail (set by self-gravity)

Fig: top: column density PDF in observations (André et al. 2010). 
Bottom: volume density PDF from galaxy simulations. The power-law 

tail is not captured because of limited resolution. (Grisdale et al. 2017) 
(For an example capturing the power tail, see Renaud et al 2013)

Knowing the distribution of gas density is very important 
since it is the ingredient for star formation

The shape is rather universal, except in extreme cases 
(e.g. high redshift, interactions)



GALACTIC POWER SPECTRUM DENSITY (1/2)

The power spectrum density (PSD) quantifies the relative 
representativity of scales

P = lim
N→∞

(Δx)2

N

N

∑
n=1

xn exp (−
i2πnΔx

N )
2

where  is the signal (e.g. a gas density map) sampled 
over  points at the resolution 

xn
N Δx

Expect a change of slope at the scale-height of the 
galactic disk: turbulence switches from 2D to 3D

Fig: Power spectrum density of a simulation of a Milky 
Way-like disk galaxy. The change of slope at ~ 100 pc 
corresponds to the transition to 3D turbulence, at the 

scale-height of the disk. The shaded area is affected by 
finite resolution (Renaud et al. 2021c)

Other features can be seen (feedback effects, large-scale 
structures), but are mostly averaged-out. 

In other words:   where  is the 
Fourier transform and  is its complex conjugate

P = ℱℱ* = ℱ
2

ℱ
ℱ*



GALACTIC POWER SPECTRUM DENSITY (2/2)

Without feedback: largest discrepancies at small scales

Observations
Feedback

No Feedback

large 
scales

small 
scales

NGC 628 NGC 4736 NGC 5055

Feedback is needed to statistically match real galaxies

Fig: Top: observations of disk galaxies from the THINGS 
survey (Walter et al. 2008). 

Right: Power Spectrum Density of simulated disk 
galaxies, with and without feedback (Grisdale et al. 2017)



INJECTION SCALE OF TURBULENCE

Because of dissipation, turbulence needs a continuous 
energy injection to be maintained

     where  is the wavenumberL = 2π
∫ k−1Ekdk

∫ Ekdk
k

see Joung, Mac Low and Bryan (2009) for details

feedback

no feedback

L [pc]

Feedback participates in turbulence injection to scales 
much larger than molecular clouds (~ kpc)

Coupling of feedback to large scales is the key



COMPLEX PROPAGATION OF FEEDBACK

The deposition of energy and momentum by 
stellar feedback is well understood

How feedback couples to galactic scales is 
very complex

Example: consider a box of gas (100 pc, 10 km/s, 100 cm-3)

Make different realizations of the turbulence 
keeping the average quantities unchanged

(i.e. these are strictly identical if
the resolution is > 100 pc)

Movies: propagation of one supernova bubble in 4 
different realizations. Every case is different (scale, 

speed, coupling). (Ohlin et al. 2019)



EXPANSION RATE AND VOLUME OF SN BUBBLES

Fig: time evolution of the size of supernova bubble in different realizations of the same medium, with different 
turbulence realizations. The average solution (solid black) is far from that in the average medium (dashed orange).
(Ohlin et al. 2019)

in homogeneous medium

individual realizations

average and std. deviation
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The coupling to large scale depends on the fine details of the ISM structure: highly anisotropic!

Impossible to resolve in cosmological simulations ... Is feedback wrong in large-scales simulations?



DRIFT AND RUNAWAYS

Where stars inject feedback is very important!
But stars can move significantly away from their formation sites

• Asymmetric drift:

Fig: asymmetric shapes of GMCs due to 
explosions of SNe behind the clouds in a galaxy 

simulation (Renaud et al. 2013)

Movie: simulation of a disk galaxy without (left) and 
with (right) runaway stars (Andersson et al. 2020)

Velocity in the galaxy: v2 = v2
circ − σ2

At formation: 
~10 Myr later:   (because of relaxation)
                        (because of dissipation)

σ⋆ = σcloud ≈ 10 km s−1

σ⋆ ≈ 15 km s−1

σcloud ≈ 9 km s−1

→ stars lag behind their clouds

• Runaways:
Some stars get kicked out clusters (by star-star interactions)
with velocities ~ 30 - 500 km/s
→ can reach low density ISM 
     and the circum-galactic medium

→ less efficient (or less rapid) cloud destruction



FEEDBACK IS NEEDED TO REGULATE GALAXY FORMATION

Efficient suppression of star formation by stellar 
feedback in the first ~ 3Gyr
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Fig: star formation history of a simulated Milky 
Way-like galaxy (Agertz & Kravtsov 2015)

The regulation depends on:

• how much feedback is injected 
(energy, momentum)

• how the galaxy reacts to it 
(e.g. escape velocity)

It is highly non-linear and time-dependent



Feedback

FEEDBACK DOES NOT EXPLAINS EVERYTHING

Fig: velocity dispersion vs. SFR. Symbols = observations; Background = simulation of an isolated 
disk. Similar behaviors are found with and without feedback → The observed dispersion originate 
mostly from large-scale disk dynamics, not feedback. (From Ejdetjärn et al., submitted)

No feedback



FEEDBACK NEEDED TO FEED THE STIRRING BY THE GALACTIC STRUCTURE

Grisdale et al. (2017)



FEEDBACK NEEDED TO FEED THE STIRRING BY THE GALACTIC STRUCTURE

Grisdale et al. (2017)
No feedback Feedback

Without feedback, unstable regions collapse and make unrealistic clumps

without feedback with feedback



ROLE OF THE SPIRALS

Spiral arms are density waves, not material waves, trapped 
in between resonances

Fig: the grand-design spiral galaxy M83. A lot of star 
(cluster) formation activity occurs along the spiral arms.

The role of spiral arms in organizing / regulating the ISM 
is not completely clear yet

Fig: Distribution of clouds in the Milky Way.
Most but not all clouds are found along spirals. 

(Garcia Fuentes et al. 2014)



SPIRAL ARMS AND THE WINDING PROBLEM

The basic idea for spiral formation is differential rotation:

A flat rotation curve implies a differential rotation: 
→ matter gets sheared into a spiral

Ω ∝ R−1

Fig: spiral formation via differential rotation 
(Mo et al. 2010)Movie: the winding problem

But quickly, the spiral would be very tightly wounded,
and thus short-lived (unlike grand-design spirals) = winding problem

Fig: example of 
a winding spiral

Simplistic solution: re-formation of the spiral. 
Problem: spirals are also seen in NIR (= old stars), so they must be old



SPIRAL DENSITY WAVE

The solution to the winding problem: spirals are not material structures,
but density waves

→ Density wave theory (Lin & Shu 1964)

A spiral structure has a pattern speed 
→ Almost all stars have a  
    (except at the radius where , which is the co-rotation)

ΩP
Ω ≠ ΩP

V/R = ΩP

Movie: density wave, in the reference 
frame of the spiral: matter enters and 

leaves the spiral 
= no shearing from diff. rotation 

(from I. Berg)

The passage of the wave increases local density → favors star formation

Fig: misaligned elliptical orbits lead to 
the formation of orbital over-densities = 
spiral waves

needs an instability to trigger it 
(e.g. tidal interaction with a 

companion, but not in all cases) 
This is still not understood!

Clouds are expected to be destroyed when leaving the arm, but
we observe inter-arm clouds... (this is not fully understood and relates
to uncertainties on the lifetime of clouds)



GAS ACCUMULATION, OR COMPRESSION?

Cloud formation is more efficient along spiral arms

Simulations show that clouds are destroyed when 
they leave the spirals arms: shallower potential, stronger shear 
(e.g. Dobbs et al. 2006, Roman-Duval et al. 2010)

Movie: simulation of a disk with imposed spiral pattern.
Overdensities are mostly found in the spirals, and dissolve 

when leaving the arms. (From C. Dobbs)

Arms have little effect on the star formation process itself

Fig: distribution of star formation efficiency in H2 observed in 
different media in 3 galaxies. No big differences are found. 

(Foyle et al. 2010)



SPIRALS HOST A DIVERSITY OF STRUCTURES

Fig: CO emission in the M51 galaxy 
(Schinnerer et al. 2014)



BEADS ON A STRING, SPURS

A same galaxy can host different 
structures along its spiral arms.

Fig: gas density along a spiral arm of a simulated Milky Way-like galaxy (top). A 
high pitch angle (i.e. arms being rather radial, left) leads to a small velocity 

difference (= weak shear) between the 2 sides of the arm. The arm can fragment 
into many clumps: beads on a string. A small pitch angle (right)  yields a stronger 

velocity difference, and thus Kelvin-Helmholtz instabilities: spurs. Spurs are 
offset with respect to the main part of the arm. (Renaud et al. 2013, 2014)

Beads on a string Spurs

Clouds could be similar, but in very 
different environments. 

Clouds in the inter-arm (e.g. feathers, spurs) 
survive the lack of compression from the arm

It questions the universality of cloud lifetime 
(~ 10 Myr). Still debated (it depends on the 
details of feedback prescriptions)



LARGE SCALE DYNAMICS AND CLOUD EVOLUTION

kpc-scale dynamics sets the boundary condition for the evolution of clouds

with shear with compression

Movies: simulations of a  cloud with imposed shear (left) or compression (right), 
extracted from a galactic disk simulation. Without feedback (Rey-Raposo et al. 2015)

105 M⊙

Different boundary conditions lead to different outcome, time-scale, SFR etc.



DIVERSITY OF SHEAR ENVIRONMENTS

The galactic velocity curve (i.e. circular velocity vs. radius) 
inside the bar is steep → strong shear

Shear smoothes out overdensities like clouds

Fig: map of the shear force (normalized to self-gravity) from a 
simulation of a Milky Way-like galaxy.  Shear the strongest near the 
galactic center, but the details are complex. (Emsellem et al. 2015)

The gas stay dense, but without any central over-dense seed 
to collapse on → star formation is slowed down (or even quenched)

E.g. in the central molecular zone (~ 300 pc),  of 
molecular gas is found at high surface density, but the SFR is 
~ 20 lower than expected (Morris et al. 1989, Longmore et al. 2013)

∼ 107 M⊙

weak strong

shear / self-gravity

1 kpc



BAR FORMATION

If  is roughly constant over a wide range of radii, orbits in this range precess together.Ω −
κ
2

If such orbits have an elongated shape, the shape is preserved in this radial range → bar formation

Because  is not perfectly constant, self-gravity must help to keep the bar togetherΩ −
κ
2

Bars exert gravitational torques on matter and drive the gas inwards 
(this can fuel an active galactic nucleus)

The question is now: what makes these orbits in the first place? 
(we don't have a complete answer to this)

Present-day disk galaxies have a high central mass 
concentration (e.g. bulge), i.e. a strong ILR, which does
not favor the formation of a bar or spirals.
Extreme cases of this: S0 galaxies: the bulge is too big to allow for spirals

→ Strong bars must form and grow slowly, together with the central mass
Fig: a spiral pattern appears with a 
simple shift in the phase of elongated 
orbits. It would be maintained with a 

roughly constant Ω − κ /2

epicycle frequency



TIPS OF THE BAR

Gas can circulate along the bar 
(on the so-called x1 orbits)

For a Milky Way-like, it takes ~ 20 Myr 
from one tip to the other

Tips of the bars are apocenters of these orbits 
→ the mater slows down
→ trafic jam! (orbital crowding)

Fig: velocity field near the tip of the bar of a 
simulated Milky Way-like galaxy. The gas 

slows down at the tip. (Renaud et al. 2015)

Connection with the spiral arm: 
even more crowding!

Preferential location for cloud-cloud collisions



CLOUD-CLOUD COLLISIONS

Collisions increase the gas density (e.g. shocks)

Similar physics as in galaxy mergers 
(e.g. tidal tails can be detected)

It can lead to the formation of giant molecular associations 
as observed at the tip of the Milky Way's bar (W43)

Fig: observations of CO in W43 (Zhang et al. 2014)

Fig: cloud-cloud collision art the tip of the bar of 
a Milky Way -like galaxy (Renaud et al. 2015)



INCREASE OF THE STAR FORMATION ACTIVITY

As interacting galaxies, cloud-cloud collisions can 
trigger star formation (Tan 2000, Inoue & Fukui 2013)

Fig: top: gas density at the tip of the bar in a Milky Way-like 
simulation. The clouds P1 and P2 will merge within a few Myr. 
Left: Kennicutt-Schmidt diagram of all molecular clouds in this 
simulation, highlighting progenitors of a cloud-cloud collision 

(large red circle) and their merger (large black circle). The merger 
lies above the bulk of all the other clouds (Renaud et al. 2015)

The resulting association yields higher star formation efficiency 
than its progenitors and than typical clouds

Collisions can lead to the formation of massive stars (Takahira et al. 2014)

Star formation and young stars are preferentially found 
on the downstream side of the tip of the bar



CLUMPY GALAXIES

At high redshift: high gas fraction: f =
Mgas

M⋆ + Mgas

Feedback can be trapped in dense clumps  
→ survival of clumps for > 100 Myr 
→ long enough to spiral-in and contribute 
     to bulge formation and BH growth

Movie: gas density in a 
simulation of a clumpy galaxy

Instabilities driven by the gas in the inter-clump medium 
lead to the formation of massive clumps (108-9 M⦿)
→ intense star formation (high SFR but average SFE)

Turbulent ISM (Mach number: )ℳ ∼ 10

still debated but likely

( for Milky Way-like 
progenitors at )

∼ 50 − 60 %
z ∼ 1 − 2

Fig: observed clumpy galaxies 
(Wuyts et al. 2012)



VARYING THE GAS FRACTION

10% 25% 40%

Movies: evolution of the gas density in simulations of isolated disks with different gas fractions. High gas fraction 
favor the onset of a different regime of instability, while low fractions maintain a disk regime, e.g. with spiral arms. 

The different structure of the ISM impacts the star formation activity (rate, efficiency). (Renaud et al. 2021c)



MORPHOLOGICAL EFFECTS OF VARYING THE GAS FRACTION

Fig: atomic, 
molecular, and 
stellar density of 
simulations of 
isolated disk galaxies 
with different gas 
fractions
When changing the  
gas fraction only, 
one move from a 
spiral structure, to a 
morphology 
dominated by 
massive clumps. 
(Renaud et al. 2021c)
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SUPPLEMENTARY MATERIAL

• Epicycle frequency
• Lindblad resonances
• Lane-Emden equation and the Bonnor-Ebert mass
• Jeans length and Jeans mass
• Jeans length including tides
• Virial theorem
• Safronov / Toomre Q parameter
• Romeo & Falstad Q parameter
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EPICYCLE FREQUENCY (1/2)

Consider a perturbation from a circular orbit in a disk: the position is ⃗r = (r0 + x) ⃗ex + y ⃗ey

In the rotating reference frame (non-inertial), the equation of motion is 

Coriolis
centrifugal

We do a Taylor expansion of the gravitational force:

⃗∇ Φ = Ω2 ⃗r ≈ Ω0 + x
dΩ
dr

r=r0

2

[(r0 + x) ⃗ex + y ⃗ey] ≈ Ω2
0r0 + Ω2

0x + 2r0Ω0x
dΩ
dr

r=r0

⃗ex + Ω2
0y ⃗ey

and 

                                                                                                                         

d2x
dt2

⃗ex +
d2y
dt2

⃗ey ≈ −Ω2
0(r0 + x) − 2r0Ω0x

dΩ
dr

r=r0

⃗ex − Ω2
0y ⃗ey + 2Ω0

dy
dt

⃗ex − 2Ω0
dx
dt

⃗ey

+Ω2
0 (r0 + x) ⃗ex + Ω2

0y ⃗ey

gravity
r0 ⃗ex

x ⃗ex

y ⃗ey

⃗Ω0

⃗r

guiding center 
(= circular motion)

= guiding center +   
perturbationd2 ⃗r

dt2
= − ⃗∇ Φ − 2 ⃗Ω0 × ⃗v − ⃗Ω0 × ( ⃗Ω0 × ⃗r)
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EPICYCLE FREQUENCY (2/2)

Possible solutions (as small oscillations around the guiding center):
 and x = x0 cos (κt + ϕ) y = y0 sin (κt + ϕ)

which gives: 

              and 

−κ2x0 cos (κt + ϕ) = − 2r0Ω0x0 cos (κt + ϕ) dΩ
dr

r=r0

+ 2κΩ0y0 cos (κt + ϕ)
−κ2y0 sin (κt + ϕ) = 2κΩ0x0 sin (κt + ϕ)

Therefore:  and finally    y0 = −
2Ω0

κ
x0 κ2 = (r

dΩ2

dr
+ 4Ω2)

r=r0

and then    and   
d2x
dt2

≈ − 2r0Ω0x
dΩ
dr

r=r0

+ 2Ω0
dy
dt

d2y
dt2

≈ − 2Ω0
dx
dt

 is called the epicycle frequencyκ
= frequency of the oscillations around a 
guiding center which is in circular motion

Special cases:
• solid-body:  → 

• Kepler rotation:  → 
Ω = cst κ = 2Ω

Ω = vc/r = GM/r3 κ = Ω
→ usually: Ω < κ < 2Ω

(at the position of the Sun: )κ ≈ 1.4Ω



RESONANCES

A resonance occurs when the orbital frequency of the star is an integer multiple of that of a forcing.

The forcing can be a rotating bar, and/or successive crests of spiral waves,
and/or a triaxial halo, and/or a companion galaxy, ...

The frequency of the forcing is called the pattern speed: ΩP

Thus, resonances occur for  where  is an integerκ = m(Ω − ΩP) m

In real galaxies, there are several superimposed 
forcings and thus multiple pattern speeds.

 are a special set of resonances called Lindblad resonancesm = ± 2
 also exist but have a smaller importance|m | > 2

If  is not an integer, the orbits are not closed, 
which induces a precession (and no resonance)

m Movie: epicycle in the rotating 
reference frame, with 

: the orbit 
is not closed, and thus it 

precesses

κ = − 10.3(Ω − ΩP)

Waves (e.g. spirals) are trapped in between resonances



LINDBLAD RESONANCES (1/2)

Consider an epicyclic motion in a barred galaxy
blue = star 
red = guiding center
black = galactic bar
(here, , for illustration only)κ = 5Ω

The bar has a velocity 
(here, , for illustration)

ΩP
ΩP = Ω/3

 
→ inner Lindblad resonance
     (ILR)
     i.e. 

κ = 2(Ω − ΩP)

ΩP = Ω −
κ
2

Co-rotation:
ΩP = Ω

Now, let's go to the reference frame of the bar:

The star feels a steady potential 
from the bar

Same as ILR, but with 
a retrograde motion

→ outer Lindblad resonance 
    (OLR) 
    i.e. 

κ = − 2(Ω − ΩP)

ΩP = Ω +
κ
2



LINDBLAD RESONANCES (2/2)

With the velocity curve (or equivalently the
potential) of the galaxy known, we can construct
the frequency profile, i.e. ,Ω(r)

fr
eq

u
en

cy

radius

Ω

Ω +
κ
2

Ω −
κ
2

ΩP

(I)ILR (O)ILR CR OLR

and compute κ = r
dΩ2

dr
+ 4Ω2

and plot,  and  as functions of radiusΩ Ω ± κ
2

For a given pattern speed , we can find 
the radii of corotation and of Lindblad resonances

ΩP

Note that, depending on , we could 
have 0, 1 or 2 inner Lindblad resonances

ΩP

The effective potential (gravitational + non inertial terms) has barriers at the resonances
→ waves are trapped in between the Lindblad resonances
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LANE-EMDEN EQUATION (1/3): THE SINGULAR ISOTHERMAL SPHERE

Consider a sphere of gas in hydrostatic equilibrium (pressure = gravity):

               (note that  depends on ) 
dP
dr

= −
Gm( < r)ρ

r2
ρ r

with the mass distribution being:     (in spherical symmetry), i.e. m( < r) = ∫ ρdV = ∫
r

0
4πr2ρdr

dm
dr

= 4πr2ρ

The equation of state of an ideal gas gives   and thus  P = nkBT = c2
s ρ

r2

ρ
dρ
dr

= −
G
c2

s
m( < r)

Taking the derivative WRT , we get the Lane-Emden equation:  r
1
r2

d
dr ( r2

ρ
dρ
dr ) = −

4πGρ
c2

s

A simple solution is , i.e. a singularity at . This is called the singular isothermal sphere.ρ ∝ r−2 r = 0

(The exact solution is )ρ =
c2

s

2πGr2
Unphysical, but simple and regularly used.
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LANE-EMDEN EQUATION (2/3): THE BONNOR-EBERT SPHERE

The new differential equation reads 
1
y2

d
dy (y2 dx

dy ) + exp(x) = 0

Let's change variables:   and  ρ = ρc exp(x) r = y
c2

s

4πGρc

This solution of a cloud of isothermal gas confined by external pressure is called a Bonnor-Ebert sphere.

Non-singular solutions exists if we impose boundary conditions: a finite central density: 
and the equilibrium with an external pressure 

ρ(r = 0) = ρc
P(r = re) = Pe = c2

s ρ(r = re)

Introducing , we get , and these 2 first order ODEs can be solved numerically.w = y2 dx
dy

dw
dy

= − y2 exp(x)
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LANE-EMDEN EQUATION (2/3): THE BONNOR-EBERT MASS

The mass enclosed by a Bonnor-Ebert sphere is m( < r) = ∫
r

0
4πr2ρdr = 4πρc ( c2

s

4πGρc )
3/2

∫
y

0
y2 exp(x)dy

Combined with the Lane-Emden equation and integrating for the total mass (i.e. up to ), we get    

           

r = re

M =
c3

s

4πG3ρc
(y2 dx

dy )
y=y′ e

The form of the right-hand side term implies that unstable conditions exist.

Gravity overcomes internal pressure when the mass of the cloud exceeds a certain value (found numerically):

 is the Bonnor-Ebert mass, used as a criterion 
for stability against collapse.
MBEM ≳ MBE = 1.18

c4
s

G3Pe



JEANS LENGTH AND MASS

Consider a density perturbation  in a homogeneous medium of density  with the speed of sound . We consider 
only self-gravity and pressure forces.

ρ1 ρ cs

or equivalently if the mass involved is larger than the Jeans mass:   MJ =
π5/2c3

s

6G3/2ρ1/2

For instance: a cloud above this mass ("= important gravity") will collapse and form stars 
(when ignoring external forces)

The perturbation is unstable if its wavelength is larger than the Jeans length:  λJ =
πc2

s

Gρ

The Jeans and Bonnor-Ebert masses are very similar and relate to comparable stability criteria:

                 and     (using )MJ ≈ 2.92
c3

s

G3ρ
MBE ≈ 1.18

c3
s

G3ρ
Pe = c2

s ρ
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JEANS LENGTH AND MASS (1/2)

• (1) Continuity ∂ρ1

∂t
+ ρ∇v1 = 0

• (2) Force ρ
∂v1

∂t
= − ρ∇ϕ1 − ∇P1

• (3) Poisson's equation ∇2ϕ1 = 4πGρ1

• (4) Equation of state 
     (barotropic here)

P1 = c2
s ρ1

Divergence of (2), combined with (4): ρ∇( ∂v1

∂t ) = − ρ∇2ϕ1 − c2
s ∇2ρ1

Time derivative of (1):
∂2ρ1

∂t2
+ ρ

∂∇v1

∂t
=

∂2ρ1

∂t2
+ ρ∇( ∂v1

∂t ) = 0

The above-two combined with (3):
∂2ρ1

∂t2
= 4πGρρ1 + c2

s ∇2ρ1

Apply Euler equations to a perturbation density  in a homogeneous medium of density . The linearized equations areρ1 ρ

Details on where this comes from in  
Binney and Tremaine (2008) 

about the "Jeans swindle"
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JEANS LENGTH AND MASS (2/2)

The solutions of the differential equation  are 
∂2ρ1

∂t2
= 4πGρρ1 + c2

s ∇2ρ1 ρ1(x, t) ∝ exp [i (kx − ωt)]

When injecting into the equation: 
                                                          
                                                                      which is the dispersion equation of the perturbation

(−iω)2ρ1 = 4πGρρ1 + c2
s (ik)2ρ1

−ω2ρ1 = 4πGρρ1 − c2
s k2ρ1

ω2 = c2
s k2 − 4πGρ

The perturbation grows (i.e. we have an instability instead of an oscillation) if , i.e. ω2 < 0 c2
s k2 < 4πGρ

In term of wavelength  we get  which defines the Jeans length   λ =
2π
k

λ2 >
πc2

s

Gρ
λJ =

πc2
s

Gρ

In term of mass:          (  is the "diameter" of the unstable region)MJ =
4
3

πρ ( λJ

2 )
3

=
π5/2c3

s

6G3/2ρ1/2
λJ



JEANS CRITERION INCLUDING TIDES

In the Jeans formalism, we study the propagation of a perturbation in a homogeneous Universe

MJeans /
1

(1� �)3/2

✓
v2s

G⇢1/3

◆3/2

MJeans /
1

(1� �)3/2

✓
v2s

G⇢1/3

◆3/2

MJeans /
1

(1� �)3/2

✓
v2s

G⇢1/3

◆3/2

MJeans /
1

(1� �)3/2

✓
v2s

G⇢1/3

◆3/2

MJeans /
1

(1� �)3/2

✓
v2s

G⇢1/3

◆3/2

MJeans /
1

(1� �)3/2

✓
v2s

G⇢1/3

◆3/2

MJeans /
1

(1� �)3/2

✓
v2s

G⇢1/3

◆3/2

internal 

pressure

self-gravity
correction 

term for the 

tides

In reality, a non-flat gravitational potential induces tides, which alter the stability criteria

With classical tides:   
It goes with pressure and acts as a support against collapse

λ > 0

With compressive tides:   (see Renaud et al. 2008, 2009) 
It goes with self-gravity and favors collapse

λ < 0

The Jeans criterion can be modified to include tidal effects: 
(Jog 2013, 2014, Mondal & Chakraborty 2015)



VIRIAL THEOREM

For a system in isolation, in a stationary state of equilibrium:

also often written:

Therefore, for a virialized system:

Being virialized is not the same as being in equilibrium (see the derivation on the next slides)

Ekin = −
Epot

2
2K + W = 0

E = Ekin + Epot =
Epot

2
= − Ekin
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VIRIAL THEOREM (1/5)

The moment of inertia of a system made of N particles is I = ∑
i

mir2
i

Its time derivative is 
dI
dt

= 2∑
i

miri
dri

dt
= 2∑

i

mirivi The quantity  is called the virial.Q =
1
2

dI
dt

The time derivative of the virial is 

                                                                                               

dQ
dt

= ∑
i

mi (v2
i + riai) = ∑

i

miv2
i + ∑

i

ri ∑
j≠i

Fij

= ∑
i

miv2
i + ∑

i
∑
j<i

rijFij

This step is explained in 2 different ways on the next 2 pages.
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VIRIAL THEOREM (2/5)

∑
i

ri ∑
j≠i

Fij = ∑
i

ri ∑
j<i

Fij + ∑
j>i

Fij = ∑
i

∑
j<i

riFij + ∑
i

∑
j>i

riFij

∑
i

∑
j>i

riFij = ∑
j

∑
i<j

riFij

= ∑
i

∑
j<i

rjFji

Explanation #1 for the double sum:

(we inter-change the sums)

= − ∑
i

∑
j<i

rjFij

(we change the name of the indexes, nothing else)

About the last term:

(from Newton's 3rd law)

Back to the first line: ∑
i

ri ∑
j≠i

Fij = ∑
i

∑
j<i

riFij − ∑
i

∑
j<i

rjFij

= ∑
i

∑
j<i

(ri − rj) Fij = ∑
i

∑
j<i

rijFij

(we split the innermost sum)
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VIRIAL THEOREM (3/5)

= r1 (F12 + F13 + F14 + . . . ) + r2 (F21 + F23 + F24 + . . . ) + r3 (F31 + F32 + F34 + . . . ) + . . .

Explanation #2 for the double sum:

= ∑
i

∑
j<i

rijFij

= [F12r12 + F13r13 + F14r14 + . . . ] + [F23r23 + F24r24 + . . . ] + [F34r34 + . . . ] + . . .

= [F12(r1 − r2) + F13(r1 − r3) + F14(r1 − r4) + . . . ] + [F23(r2 − r3) + F24(r2 − r4) + . . . ] + [F34(r3 − r4) + . . . ] + . . .

= r1 (F12 + F13 + F14 + . . . ) + r2 (−F12 + F23 + F24 + . . . ) + r3 (−F13 − F23 + F34 + . . . ) + . . .

∑
i

ri ∑
j≠i

Fij =
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VIRIAL THEOREM (4/5)

Suppose that the force attracts the particles as the inverse power q of the their distance:

                   (for gravitation, q=2)Fij = −
k
rq
ij

The potential energy of this force is Uij = − ∫ Fij dr = −
k

(q − 1)rq−1
ij

and thus rijFij = −
k

rq−1
ij

= (q − 1)Uij

Back to the virial:  
dQ
dt

= ∑
i

miv2
i + ∑

i
∑
j<i

(q − 1)Uij = 2Ekin + (q − 1)Epot

When Q is constant (see what it means on the next page), and for the gravitation force (q=2):

dQ
dt

= 0 ⟹ Ekin = −
Epot

2
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VIRIAL THEOREM (5/5)

In principle, we can only apply this when averaging over infinite time . But for large  systems
we can invoke the ergodic principle: 

(τ → ∞) N

Averaging over an infinite time  is equivalent to averaging over many objects lim
τ→∞

1
τ ∫

τ

0
dt lim

N→∞

1
N ∑

N

The time average of a quantity X is 

Applied to the derivative of Q, we get  

⟨X⟩ = lim
τ→∞

1
τ ∫

τ

0
X dt

⟨
dQ
dt

⟩ = lim
τ→∞

1
τ ∫

τ

0

dQ
dt

dt = lim
τ→∞

Q(τ) − Q(0)
τ

This is equal to zero if  takes finites values, which typically means a bound system with regular motions. 
This leads to the virial theorem.

Q

and therefore,  when the energies are the averages over many particles (e.g. star clusters, galaxies)Ekin = −
Epot

2



THE SAFRONOV / TOOMRE Q PARAMETER

Local instability criterion for an axisymmetric thin disk

The disk is stable to axisymmetric perturbations (only!) 
for   (for gas) or  (for stars)Q ≡

κcs

πGΣ0
> 1 Q ≡

κσR

3.36GΣ0
> 1

It's comparable (but not equivalent) to Jeans' criterion
for 3D waves (pressure vs. gravity)

In practice, instabilities are often seen even for , because of 
assumptions in the formalism, and because of non-axisymmetric effects

Q ≳ 2

In stellar + gaseous disks, we need a mix of the gas and stellar Q 
which evolves with the gas fraction (several theoretical propositions)

Fig: example of a radial profile 
of Toomre Q 

(Semczuk et al. 2016)



THE ROMEO & FALSTAD (2013) STABILITY PARAMETER

Limitations of the Safronov / Toomre Q parameters:

𝒬RF = (∑
i

1
Qi

Wi

Ti )
−1

how different from the 
most unstable component

disc 
thickness

• does not account for more than one component (stars or gas)
• relies on the razor thin disk approximation:  

(i.e. pertubation scale  disc scale-height))
kh ≪ 1

≫

It does not have a predictive power on real galaxies

Alternative: the Wang & Silk (1994) parameter: QWS = ( 1
Q⋆

+
1

Qg )
−1

But it does not account for the mutual effect of the components on each others, nor for different weights of the components

Better alternative: the Romeo & Falstad (2013) parameter: 

(see an application to simulated disk galaxies in Renaud et al. 2021c)

• sum over the components
• weight the Toomre parameters with a correction factor (W / T)


